Low-pass transfer function design sample using FAZA.

Input parameters:

Fpass = 2.5*10^6 (rad/sec)

Fstop = 3.0*10^6 (rad/sec)

Apass = 0.5 (db)

Fstop = 45 (db)

Approximation method: Inverse Chebyshev



Low-pass specification setup

low-pass specification

Low-pass specification.

Transfer function properties:

Filter's order: 12

Nominator's degree: 12

Denominator's degree: 12

Transfer function H(s) = P(s)/Q(s)

Transfer function nominator P(s):

P(s) = 6.12047e+078 + S^2 * 2.04016e+066 + S^4 * 2.5502e+053 + S^6 * 1.46925e+040 + S^8 * 3.82617e+026 + S^10 * 3.64397e+012 + S^12 * 0.00562

Transfer function denominator Q(s):

Q(s) = 6.12047e+078 + S^1 * 7.96017e+072 + S^2 * 7.21658e+066 + S^3 * 4.57489e+060 + S^4 * 2.29057e+054 + S^5 * 9.12828e+047 + S^6 * 2.95926e+041 + S^7 * 7.75914e+034 + S^8 * 1.62789e+028 + S^9 * 2.6527e+021 + S^10 * 3.18301e+014 + S^11 * 2.52302e+07 + S^12 * 1.0

Factored form of transfer function:

P(s) = 5.623413e-003*(s^2 + 9.155991e+012)*(s^2 + 1.054416e+013)*(s^2 + 1.429912e+013)*(s^2 + 2.428557e+013)*(s^2 + 6.145584e+013)*(s^2 + 5.282593e+014)

Q(s) = 1.0*(s^2 + s*3.210471e+005 + 7.244460e+012)*(s^2 + s*1.050712e+006 + 8.086841e+012)*(s^2 + s*2.092969e+006 + 1.012629e+013)*(s^2 + s*3.848255e+006 + 1.428671e+013)*(s^2 + s*6.956610e+006 + 2.217774e+013)*(s^2 + s*1.096058e+007 + 3.256118e+013)

magnitude response

Magnitude response.

trandfer function

Transfer function.

phase response

Phase response.

phase delay

Phase delay.

group delay

Group delay.

step response

Step response.

unit impulse response

Unit impulse response.

zero-pole diagramm

Zero-poles diagram.

Matheonics Technology Inc, 2009

Tutorial navigation